[1]ARCHER L B.Systematic method for designers[J]. Design,1964:56-59.
[2]ALEXANDER C.Notes on the Synthesis of Form[M]. Cambridge: Harvard University Press,1964.
[3]JONES J C.Design methods[M].New York: John Wiley & Sons,1992.
[4]PAPANEK V.The future isn't what it used to be[J]. Design Issues,1988,5(1): 14-17.
[5]RITTEL H.On the planning crisis: Systems analysis of the first and second generations'[J].Bedriftskonomen,1972(8): 390-396.
[6]SCHANK R C.Dynamic memory: A theory of reminding and learning in computers and people[M].Cambridge: cambridge university press,1983.
[7]KOLODNER J L.Reconstructive memory: A computer model [J].Cognitive science,1983,7(4): 281-328.
[8]DOMESHEK E,KOLODNER J.Using the points of large cases [J].Ai Edam,1993,7(2): 87-96.
[9]FALTINGS B.Case reuse by model-based interpretation [J].Issues and applications of case-based reasoning in design,1997: 39-60.
[10]VOSS A.Case design specialists in FABEL[J].Issues and applications of case-based reasoning in design,1997:301-335.
[11]FISCHER G,MCCALL R,MORCH A.Design environments for constructive and argumentative design[J].ACM SIGCHI Bulletin,1989,20(SI): 269-275.
[12]FLEMMING U,AYGEN Z,COYNE R,et al.Case-based design in a software environment that supports the early phases in building design[J].Issues and Applications of Case-Based Reasoning in Design,1997:61-85.
[13]魏力恺,张颀,张备,等.Architable:基于案例设计与新原型[J].天津大学学报(社会科学版),2015,17(6):556-61.
WEI L,ZHANG Q,ZHANG B,et al.Architable: Case-based design and new prototype[J].Journal of Tianjin University(Social Sciences),2015,17(6): 556-561.
[14]唐芃,李鸿渐,王笑,等.基于机器学习的传统建筑聚落历史风貌保护生成设计方法——以罗马Termini火车站周边地块城市更新设计为例[J].建筑师,2019(1):100-105.
TANG P,LI H,WANG X,et al.A machine learning-based design method for the preservation and generation of historical features of traditional architectural settlements: A case study of urban renewal design around Rome Termini Railway Station[J].The Architect,2019(1): 100-105.
[15]HUANG W,ZHENG H.Architectural drawings recognition and generation through machine learning[C]//Proceedings of the 38th Annual Conference of the ACADIA.2018.
[16]CHAILLOU S.Archigan: Artificial intelligence x architecture[M].Architectural intelligence.Springer.2020: 117-127.
[17]LIU Y,LUO Y,DENG Q,et al.Exploration of Campus Layout Based on Generative Adversarial Network Discussing the Significance of Small Amount Sample Learning for Architecture[C]//Proceedings of the 2020 DigitalFUTURES.2020.
[18]LIU Y,FANG C,YANG Z,et al.Exploration on Machine Learning Layout Generation of Chinese Private Garden in Southern Yangtze[C].proceedings of the The International Conference on Computational Design and Robotic Fabrication,F.Springer.2021.
[19]LIU Y,LAI Y,CHEN J,et al.Scut-autoalp: A diverse benchmark dataset for automatic architectural layout parsing[J].IEICE TRANSACTIONS on Information and Systems,2020,103(12): 2725-2729.
[20]SHEN J,LIU C,REN Y,et al.Machine learning assisted urban filling[C]//Proceedings of the 25th International Conference on CAADRIA.2020.
[21]FEDOROVA S.GANs for Urban Design[J].arXiv preprint,2021.
[22]PAN Y,QIAN J,HU Y.A preliminary study on the formation of the general layouts on the northern neighborhood community based on GauGAN diversity output generator[C].proceedings of the The International Conference on Computational Design and Robotic Fabrication,F.Springer.2020.
[23]QUAN S J.Urban-GAN: An artificial intelligence-aided computation system for plural urban design[J].Environment and Planning B: Urban Analytics and City Science,2022.
[24]RHEE J,CARDOSO LLACH D,KRISHNAMURTI R.Context-rich Urban Analysis Using Machine Learning: A case study in Pittsburgh,PA[C]//the 37th eCAADe and 23rd SIGraDi Conference.2019.
[25]徐畅.南头古城实验:基于身体感知理论的空间认知初探 [D].深圳:深圳大学,2020.
XU Chang.Nantou Ancient City experiment: a preliminary study of spatial cognition based on body perception theory[D].ShenZhen: ShenZhen University,2020.
|