[1]胡姗,张洋,燕达,等. 中国建筑领域能耗与碳排放的界定与核算[J]. 建筑科学,2020(S02):288-297.
Hu Shan,Zhang Yang,Yan Da,et al. China building energy consumption and carbon emissions in the field of definition and calculation[J]. Building Science,2020, (S02):288-297.
[2] HAMILTON I, RAPF O, KOCKAT D J, et al., 2020 Global Status Report for Buildings and Construction: Towards a Zero-emission, Efficient and Resilient Buildings and Construction Sector [R]. Nairobi: United Nations Environmental Programme, 2020.
[3] WIGGINTON M, HARRIS J. Intelligent skins[M]. Woburn:Routledge, 2013.
[4] LOONEN R, RICO-MARTINEZ J, FAVOINO F, et al. Design for facade adaptability-Towards a unified and systematic characterization//proceedings of the Proc 10th Energy Forum-Advanced Building Skins[C].Bern, Switzerland, F, 2015.
[5]李保峰. 适应夏热冬冷地区气候的建筑表皮之可变化设计策略研究[D]. 北京:清华大学,2004.
Li Baofeng. Study on the Variable Design Strategy of Building skin adapting to the climate of hot summer and cold winter region[D]. Beijing:Tsinghua University,2004.
[6]苗展堂,冯刚,郭娟利,等. 响应外部环境变化的可变建筑表皮设计研究[J]. 动感:生态城市与绿色建筑,2016(4):48-55.
Miao Zhantang, Feng Gang, Guo Juanli,et al. Research on variable building skin design in response to external environment change[J]. Dynamic:Eco-City and Green Building,2016(4):48-55.
[7]冯刚,胡惟洁. 高层建筑表皮形态的演进[J]. 新建筑, 2018(1):73-77.
Feng Gang,HU Weijie.Evolution of high-rise building skin form [J]. New Architecture,2018 (1):73-7.
[8]冯刚,陈达,苗展堂.“动态封装”——可变建筑表皮系统设计研究 [J].建筑师,2018(1):116-123.
Feng Gang,Chen Da,Miao Zhantang."Dynamic Encapsulation" : Research on Design of Variable Building Skin System [J]. Architects,2018(1):116-123.
[9]冯刚, 肖正天. 基于光环境动态响应的可变建筑表皮设计探究// proceedings of the 数智营造:2020年全国建筑院系建筑数字技术教学与研究学术研讨会论文集, 长沙, F, 2020 [C]. 北京:中国建筑工业出版社,2020.
Feng Gang, Xiao Zhengtian. Research on variable building skin design based on dynamic response of light environment; proceedings of the Digital Intelligence Construction: 2020 National Conference on Teaching and Research of Architectural Digital Technology, Changsha, F, 2020 [C]. Beijing:China Architecture and Building Press,2020.
[10]袁烽,阿希姆·门格斯,尼尔·里奇,等. 建筑机器人建造[M]. 上海:同济大学出版社,2015.
Yuan Feng, Achim Mengers, Neil Ritchie et al. Building Robot Construction[M]. Shanghai:Tongji University Press, 2015.
[11]李飚,郭梓峰,余威,等. "数字链"塑形与建造——南京青奥村服务中心表皮设计 [J]. 新建筑,2014(6):72-75.
Li Biao,GUO Zifeng,YU Wei,et al. Shaping and Construction of "Digital Chain" : Skin Design of Service Center of Nanjing Youth Olympic Village[J]. New Architecture,2014(6):72-75.
[12]袁栋,孙澄.多目标优化在建筑表皮设计中的应用[J]. 城市建筑,2018(17):11-13.
Yuan Dong,Sun Cheng. Application of Multi-objective Optimization in building skin design[J]. Urban Architecture,2018(17):11-13.
[13] POHL G, NACHTIGALL W. Biomimetics for Architecture & Design: Nature-Analogies-Technology[M]. Springer, 2015.
[14] GRUBER P. Biomimetics in architecture[M]. Ambra Verlag, 2010.
[15] HASTRICH C. The biomimicry design spiral[J]. Biomimicry Newsletter, 2006, 4(1): 5-6.
[16] VINCENT J F, BOGATYREVA O, PAHL A K, et al. Putting biology into TRIZ: a database of biological effects[J]. Creativity and Innovation Management, 2005, 14(1): 66-72.
[17] GARCIA-HOLGUERA M, CLARK O G, SPRECHER A, et al. Ecosystem biomimetics for resource use optimization in buildings[J]. Building Research & Information, 2016, 44(3): 263-78.
[18] MAZZOLENI I. Architecture follows nature-biomimetic principles for innovative design [M]. Crc Press, 2013.
[19] PARK J J. Adaptive biomimetic facades: compound bio-inspired design strategy for multi-functional stadiums[D], 2016.
[20] BENYUS J M. Biomimicry: Innovation inspired by nature [M]. Morrow New York, 1997.
[21] ZARI M P. Biomimetic approaches to architectural design for increased sustainability; proceedings of the The SB07 NZ sustainable building conference, F, 2007[C].
[22] KURU A, FIORITO F, OLDFIELD P, et al. Multi-functional biomimetic adaptive facades: A case study;//proceedings of the FACADE 2018 Final conference of COST TU1403 “Adaptive Facades Network”, Lucerne, Switzerland, F, 2018[C].
[23] BADARNAH L, KNAACK U. Shading/energy generating skin inspired from natural systems; proceedings of the Proceedings of the SB08: World Sustainable Building Conference[C]. Melbourne, Australia, F, 2008.
[24] PEEKS M, BADARNAH L. Textured Building Facades: Utilizing Morphological Adaptations Found in Nature for Evaporative Cooling [J]. Biomimetics, 2021, 6(2): 24.
[25] DURNOVA I, FERNANDO M. Bionic architecture//Experimental Design WS 2021-22[C]. Frankfurt am Main, Germany, 2022.
[26] NALCACI G, NALCACI G. Modeling and Implementation of an Adaptive Facade Design for Energy Efficiently Buildings Based Biomimicry//proceedings of the 2020 8th International Conference on Smart Grid (icSmartGrid)[C].F, 2020. IEEE.
[27] DOERSTELMANN M, KNIPPERS J, MENGES A, et al. ICD/ITKE Research Pavilion 2013-14: Modular Coreless Filament Winding Based on Beetle Elytra[J]. Architectural Design, 2015, 85(5): 54-9.
[28] MADER A, LANGER M, KNIPPERS J, et al. Learning from plant movements triggered by bulliform cells: the biomimetic cellular actuator[J]. Journal of the Royal Society Interface, 2020, 17(169): 20200358.
[29] CLERC C. Biomimicry: Towards a Sustain-Able Design [J]. Biomimicry in Higher Education Webinar, 2011: 33.
[30] PARR D R. Biomimetic Lessons for Natural Ventilation of Buildings//proceedings of the Conference on Biomimetic and Biohybrid Systems, F, 2013[C]. Springer.
[31] SCHLEICHER S, LIENHARD J, POPPINGA S, et al. A methodology for transferring principles of plant movements to elastic systems in architecture[J]. Computer-Aided Design, 2015(60): 105-117.
[32] WISCOMBE T. Beyond assemblies: system convergence and multi-materiality[J]. Bioinspiration & Biomimetics, 2012, 7(1): 015001.
[33] KHOSROMANESH R, ASEFI M. Form-finding mechanism derived from plant movement in response to environmental conditions for building envelopes[J]. Sustainable Cities and Society, 2019, 51: 101782.
[34] HOSSEINI S M, FADLI F, MOHAMMADI M. Biomimetic kinetic shading facade inspired by tree morphology for improving occupant’s daylight performance[J]. Journal of Daylighting, 2021, 8(1): 65-82.
[35] LIENHARD J, SCHLEICHER S, POPPINGA S, et al. Flectofin: a hingeless flapping mechanism inspired by nature[J]. Bioinspiration & biomimetics, 2011, 6(4): 045001.
[36]KRIEG O, CHRISTIAN Z, CORREA D, et al. HygroSkin: meteorosensitive pavilion//proceedings of the Fabricate 2014[C]. Zurich,Switzerland, 2014.
[37] BENGISU M, FERRARA M. Materials that move: smart materials, intelligent design[M]. Springer, 2018.
[38] LóPEZ M, RUBIO R, MARTíN S, et al. How plants inspire facades. From plants to architecture: Biomimetic principles for the development of adaptive architectural envelopes[J]. Renewable and Sustainable Energy Reviews, 2017(67): 692-703.
[39] BADARNAH L, FARCHI Y N, KNAACK U. Solutions from nature for building envelope thermoregulation[J]. Design & Nature V: Comparing Design in Nature with Science and Engineering, 2010(5): 251.
[40] DECKER M. EMERGENT FUTURES: nanotechology and emergent materials in architecture//proceedings of the Conference of Tectonics of Teaching: Building Technology Educators Society (BTES)[C]. Newport: Rhode Island, F, 2013 .
[41] SHEIKH W T, ASGHAR Q. Adaptive biomimetic facades: Enhancing energy efficiency of highly glazed buildings[J]. Frontiers of Architectural Research, 2019, 8(3): 319-331.
[42] PAYNE A O, JOHNSON J K. Firefly: Interactive prototypes for architectural design[J]. Architectural Design, 2013, 83(2): 144-147.
[43] ASLAN D, SELcUK S A. A Biomimetic approach to rainwater harvesting strategies through the use of buildings[J]. Eurasian Journal of Civil Engineering and Architecture, 2018, 2(1): 27-39.
[44] KHELIL S, KHELIL A E K, KORAY3 ZEMMOURI N. Raising the efficiency of deployable building facades with Biomimetics for hot and arid regions [M]. Architechture, Technology and Innovation 2020: "Smart Buildings, Smart Cities". Izmir, Turkey; Yasar University. 2020: 128-136.
[45] BADARNAH L, KNAACK U, ING D. Bio-Inspired ventilating system for building envelopes[C]//proceedings of the Proceedings of the International Conference of 21st Century: Building Stock Activation, Tokyo, Japan, F, 2007.
[46] GU Z-Z, WEI H-M, ZHANG R-Q, et al. Artificial silver ragwort surface[J]. Applied Physics Letters, 2005, 86(20): 1915-1—1915-3.
|