South Architecture ›› 2019, Vol. 0 ›› Issue (3): 114-120.DOI: 10.3969/j.issn.1000-0232.2019.03.114

• Urban and Rural Planning • Previous Articles     Next Articles

Analysis of Dynamic and Static Characteristics of a Traditional Commercial Center Area Based on Multi-Source Big Data: A Case Study of the Shangxiajiu Business District

JIN Tan-hua,YANG Jun-yan,WANG Qiao,ZHEN Feng   

  • Online:2019-06-25 Published:2019-06-25

基于多源大数据的传统商业中心区动静特征与规律解析——以广州上下九商业区为例

金探花1,杨俊宴2,王 桥3,甄 峰4   

  • 作者简介:1硕士研究生;2教授,通信作者,电子邮箱:yjy-2@163.com;1&2东南大学建筑学院;3东南大学信息科学与工程学院,教授;4南京大学建筑与城市规划学院,教授
  • 基金资助:
    国家自然科学基金重点资助项目(51838002):基于大数据的城市中心区空间规划理论与关键技术研究;国家自然科学基金项目(51578128):基于“人—地—业—能”大数据平台的城市空间形态时空演化与结构特征研究。

Abstract: Stable and subtle urban morphology data is the basis for researching urban stationery law, while the mobile phone signalling data containing dynamics of time and the accuracy of individual positioning is a fundamental tool for studying urban dynamic law. In this paper, the author takes Guangzhou SHANGXIAJIU Commercial District, which is representative of China's traditional business center, as an example. On the one hand, the spatial form of big data is utilized to characterize the static space from the dimensions of height, intensity and density; on the other hand, the mobile phone signalling data is utilized to simulate the dynamic structure of the population activities, the dynamic travel relationship, and the spatial-temporal distribution of people. In summary, in this study the author summarizes the activity characteristics and changing laws of the SHANGXIAJIU commercial center area from the two dimensions of dynamic and static, and provides empirical support for the spatial vitality law of the traditional urban commercial center.

Key words: multi-source big data, traditional commercial central district, spatial-temporal characteristic, SHANGXIAJIU Commercial District

摘要: 空间形态大数据在空间上具有静态、精细等特征,是研究城市静态规律的基本;手机信令大数据具有时间上的动态性、个体定位的精准性,是研究城市动态规律的重要工具。广州上下九商业区,是中国传统商业中心区的代表。以广州上下九商业区为例,一方面,利用空间形态大数据,进行高度,强度,密度的静态空间刻画;另一方面,利用手机信令大数据,从出行距离、时长、时段等多个视角,刻画上下九地区人群活动动态结构,以及动态时空出行行为关系,总结上下九人群时空分布规律以及与外界的时空行为联系特征。综上所述,从动静两个维度,总结出上下九商业中心区空间的活动特征和变化规律,为传统城市商业中心区的空间活力规律研究提供了实证支持。

关键词: 多源大数据, 传统商业中心区, 动静特征, 上下九商业区

CLC Number: