SHI Xuepeng, SHI Chengfei, XIE Xudong, Wang Lijun. Prediction Method of Adaptive Facade output Performance Driven by the Neural Network[J]. South Architecture, 2024, 0(8): 14-21.
[1]KNAACK U,KLEIN T,BILOW M,et al.Principles of Construction[J].Façades,2014:36-51.
[2]OCHOA C E,CAPELUTO I G.Strategic decision-making for intelligent buildings:Comparative impact of passive design strategies and active features in a hot climate[J].Building and Environment,2008,43(11):1829-1839.
[3]LOONEN R C G M,TRČKA M,CÓSTOLA D,et al.Climate adaptive building shells:State-of-the-art and future challenges[J/OL].Renewable and Sustainable Energy Reviews,2013,25:483-493.
[4]LOONEN R C G M,TRČKA M,CÓSTOLA D,et al.Climate adaptive building shells:State-of-the-art and future challenges[J].Renewable and Sustainable Energy Reviews,2013,25:483-493.
[5]CHAKRABORTY D,ELZARKA H.Advanced machine learning techniques for building performance simulation:a comparativeanalysis[J].Journal of Building Performance Simulation,2019,12(2):193-207
[6]YE Z,NOBRE A,REINDL T,et al.On PV module temperatures in tropical regions[J].Solar Energy,2013,88:80–87.
[7]HOFER J,GROENEWOLT A,et al.Parametric analysis and systems design of dynamic photovoltaic shading modules[J].Energy Science and Engineering,2016,4(2):134-152.
[8]FOUCQUIER A,ROBERT S,et al.State of the art in building modelling and energy performances prediction:A review[J].Renewable and Sustainable Energy Reviews,2013,23:272-288.
[9]MAJUMDER M.Artificial Neural Network[J].Network and Complex Systems,2015,3(1):49–54.
[10]SULAIMAN S.,RAHMAN T.A,MUSIRIN I.Partial Evolutionary ANN for Output Prediction of a Grid-Connected Photovoltaic System[J].International Journal of Computer and Electrical Engineering,2009,1(1):40-45.
[11]MELLIT A,SAǦLAM S,KALOGIROU S A.Artificial neural network-based model for estimating the produced power ofaphotovoltaic module[J].Renewable Energy,2013,60:71-78.
[12]ABROUGUI K,GABSI K,MERCATORIS B,et al.Prediction of organic potato yield using tillage systems and soil properties by artificial neural network (ANN) and multiple linear regressions (MLR)[J].Soil and Tillage Research,2019,190:202-208.
[13]KHEAN N,KIM L,MARTINEZ J,et al.The introspection of deep neural networks-towards illuminating the black box:Training architects machine learning via grasshopper definitions[J].CAADRIA 2018 - 23rd,2018,2:237-246.
[14]IZGI E,ÖZTOPAL A,YERLI B,et al.Short-mid-term solar power prediction by using artificial neural networks[J].Solar Energy,2012,86(2):725-733.
[15]MCNEEL R,OTHERS.Grasshopper generative modeling for Rhino[J].Computer software,2010.
[16]VUKOREP I,KOTOV A.Machine learning in architecture:An overview of existing tools[J].The Routledge Companion to Artificial Intelligence in Architecture,2021:93-109.
[17]NUS.NUS DoA[EB/OL](2019).https://www.sde.nus.edu.sg/arch/facilities/net-zero-energy-building-sde-4/.
[18]VAN DAO D,ADELI H,LY H B,et al.A sensitivity and robustness analysis of GPR and ANN for high-performance concrete compressive strength prediction using a monte carlo simulation[J/OL].Sustainability (Switzerland),2020,12(3):830
[19]周彦.低层低密度住宅规划布局研究[D].天津:天津大学,2015.
ZHOU Yan.Study on the planning and layout of low-rise and low-density residential buildings[D].Tianjin:Tianjin University,2015.
[20]沃永刚,耿化民,王爱玲.新居工程高层住宅规划布局对日照的影响[J].四川建筑,2013(3):59-60.
WO Yonggang,GENG Huamin,WANG Ailing.The influence of planning and layout of high-rise residence on Sunshine in New Residence Project[J].Sichuan architecture,2013(3):59-60.
[21]国家统计局.中国统计年鉴[S/OL].[2021-03-20].http://www.stats.gov.cn/tjsj/ndsj/.Chinese National Bureau.Statistics of the People's Republic of China Yearbook[S/OL].[2021-03-20].Http://www.stats.gov.cn/tjsj/ndsj/.
[22]DOS.Singapore Department of Statistics (DOS) | Singstat Website[EB/OL](2021)[2021-05-25].https://www.singstat.gov.sg/.